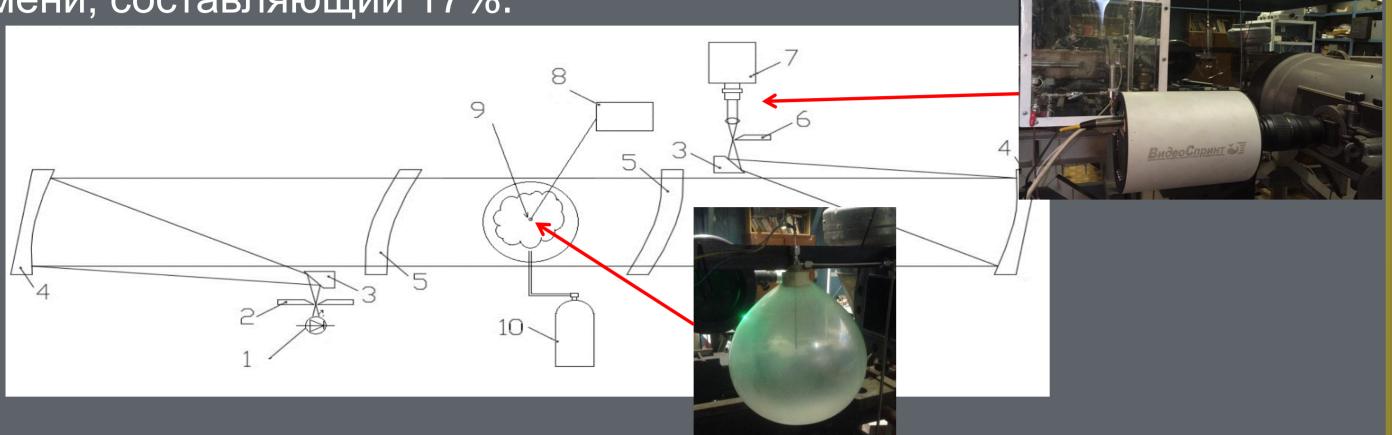
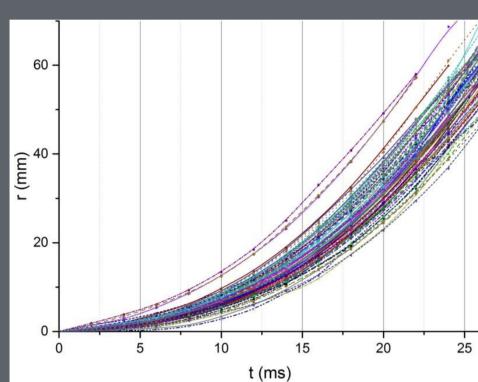


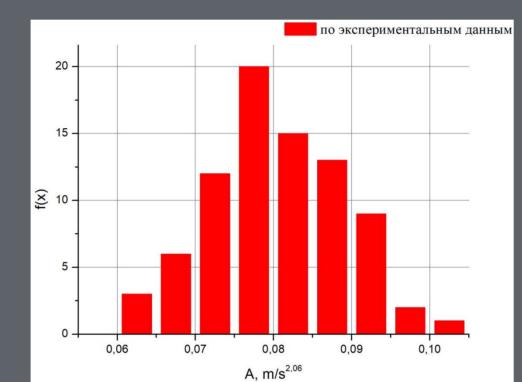
XV Всероссийский симпозиум по горению и взрыву Москва, 29 ноября — 4 декабря 2020

ВЛИЯНИЕ НАЧАЛЬНЫХ ВОЗМУЩЕНИЙ НА УСКОРЕНИЕ ВОДОРОДНО-ВОЗДУШНОГО ПЛАМЕНИ


Володин В.В., Голуб В.В., Ельянов А.Е.

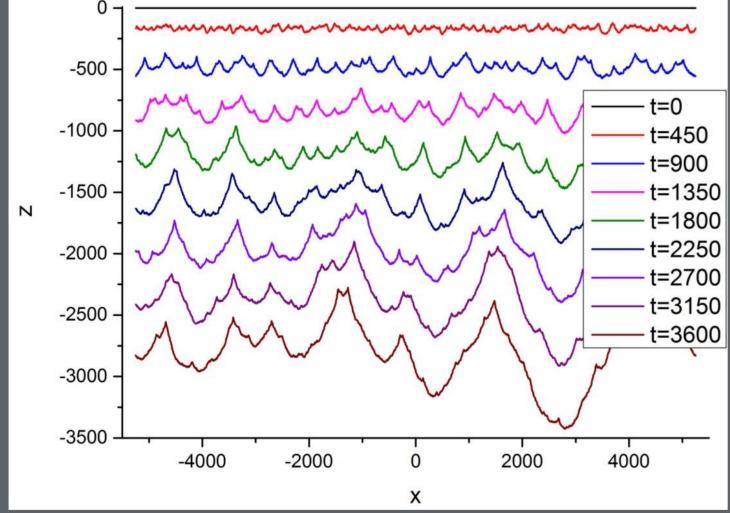
Объединённый институт высоких температур РАН


[@] vlad@ihed.ras.ru


ПРЕДПОСЫЛКИ РАБОТЫ

В ходе предыдущих экспериментальных исследований свободного распространения расширяющегося сферического пламени в смеси 15% водорода и 85% воздуха получен разброс параметров ускорения пламени, составляющий 17%.

Лабораторная экспериментальная установка: 1 — источник света; 2 — оптическая щель; 3 диагональное зеркало; 4 – сферическое зеркало; 5 - мениск; 6 – нож Фуко; 7 – высокоскоростная камера; 8 – источник зажигания; 9 – искровой разрядник; 10 – система подачи горючей смеси.



Зависимости среднего радиуса пламени от времени по результатам 84 экспериментов и гистограмма распределения предэкспоненциального множителя при аппроксимации степенной функцией вида r=At^{1.09}.

Поскольку горючая смесь для всей серии экспериментов готовилась предварительно в одной ёмкости, наблюдаемый разброс считается следствием различия в начальных возмущениях неустойчивого фронта пламени.

ПРОВЕРКА МЕТОДИКИ РАСЧЕТА

При моделировании фронта пламени без начальных возмущений, фронт оставался прямым в течение сколь угодно длительного времени При начальных возмущениях в виде распределения с шириной участка 1 λ_{DL} и случайной амплитудой до 1/1000 толщины фронта пламени расчёт демонстрирует развитие неоднородностей фронта пламени со временем.

Профили пламени через 0.13, 0.25, 0.38, 0.51, 0.63, 0.76, 0.89 и 1.01 с после начала распространения. Смещение по вертикальной оси добавлено для лучшей видимости.

Проведено исследование сходимости по пространственному временному шагу. Уменьшение шага на порядок приводит к отклонению зависимости рассчитанной скорости от времени менее чем на 1%.

ВЫВОДЫ

Из представленных результатов эксперимента, численного моделирования и их анализа можно сделать следующие выводы:

•распространение искривлённого фронта пламени в изначально неподвижной газовой смеси возможно с различными скоростями при неизменных начальных условиях;

•при неустойчивом распространении складчатого фронта пламени, различия вызваны как погрешностью составлении смеси, так и разными конфигурациями начальных возмущений, определяющих динамику развития структуры пламени, и, соответственно его скорости.

Приведенные результаты доказывают необходимость статистического описания ускорения ламинарного пламени и развития газовых взрывов.

ЧИСЛЕННАЯ МОДЕЛЬ

Для проверки предположения проведена серия расчетов, включающая численное интегрирование уравнения Сивашинского в плоской 2D постановке в 15% водородно-воздушной смеси:

$$\frac{\partial \Phi}{\partial t} + Ze^2(1 - Le)^2 \nabla^4 \Phi + \left(\frac{1}{2}Ze(1 - Le) - 1\right) \nabla^2 \Phi + \frac{1}{2}(\nabla \Phi)^2 = \frac{\Theta - 1}{8\pi^2 \Theta} \int_{-\infty}^{\infty} |k| \exp(ik(x - z)) \Phi(z) dk dz.$$

Средняя скорость пламени рассчитывалась по приближённой формуле:

$$\Phi(x,t) \to \Xi(t) = \frac{1}{X} \int 1 + \left(\frac{\partial \Phi}{\partial x}\right)^2 dx$$

$$\int_{0.001} \frac{\lambda = 0.5\lambda_{\text{DL}}, \text{ a=0.1}}{\lambda = 0.25\lambda_{\text{DL}}, \text{ a=0.01}}$$

$$\lambda = 0.25\lambda_{\text{DL}}, \text{ a=0.1}$$

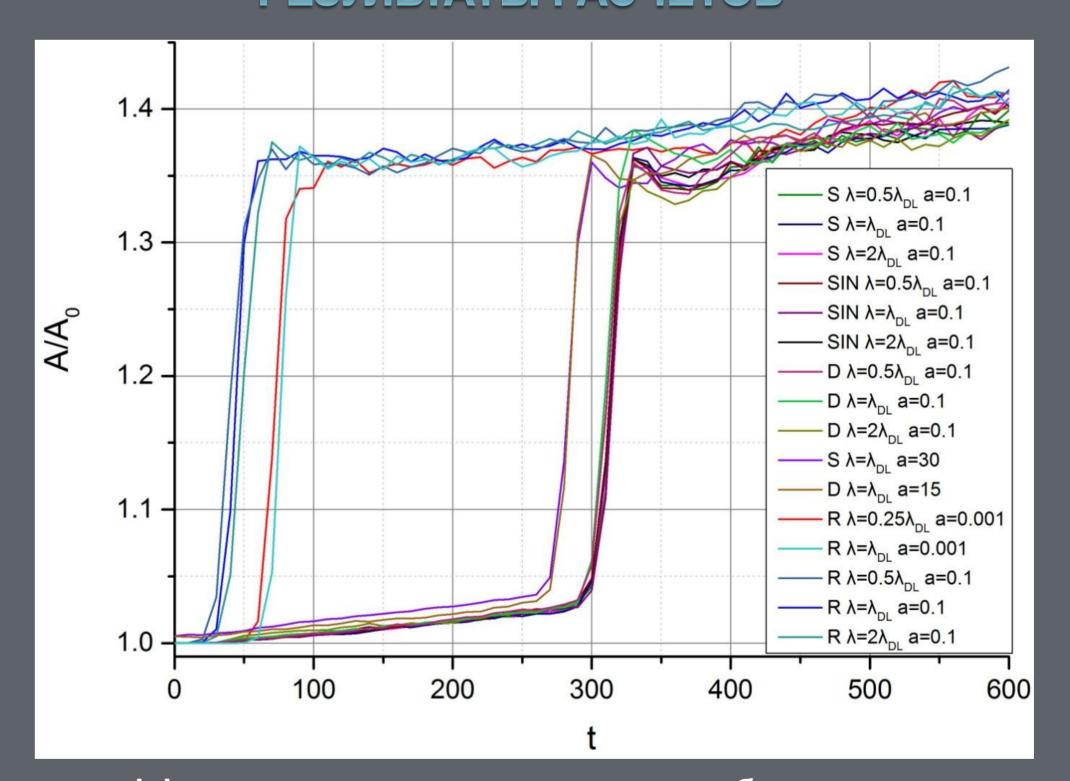
$$\lambda = 0.25\lambda_{\text{DL}}, \text{ a=0.1}$$

$$\lambda = 0.25\lambda_{\text{DL}}, \text{ a=0.01}$$

$$\lambda = 0.25\lambda_{\text{DL}}, \text{ a=0.1}$$

$$\lambda = 0.25\lambda_{\text{DL}}, \text{$$

Начальные распределения возмущений фронта пламени.


В качестве начальных возмущений были заданы:

•ступенчатые распределения с шириной участка $\frac{1}{4}$ и 1 λ_{DI} (длины волны, соответствующей максимальной скорости роста по механизму Дарье-Ландау) и случайной амплитудой до 1/1000 толщины фронта пламени; •единичные и сдвоенные прямоугольные и гармонические импульсы с шириной участка $\frac{1}{2}$, 1 и 2 λ_{DI} и амплитудой 1/10 толщины фронта

пламени; •ступенчатые распределения с шириной участка $\frac{1}{2}$, 1 и 2 λ_{DI} и случайной амплитудой до 1/10 толщины фронта пламени;

•единичный и сдвоенный прямоугольные импульсы с шириной участка λ_{DI} и амплитудой 30 и 15 толщин фронта пламени, соответственно.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Зависимости коэффициента складчатости пламени от безразмерного времени при различных начальных возмущениях.

Для всех начальных условий после определенного периода индукции наблюдается резкий рост коэффициента складчатости до значения ~1.35. Далее скорость роста зависит от начальных условий мало. Кратчайшее время индукции, когда начальные возмущения случайной амплитуды до 0.1 распределены по всей поверхности пламени. Уменьшение амплитуды начальных возмущений в 100 раз увеличивает время индукции в 1.5 раза. Время индукции фронта пламени с одиночными и двойными возмущениями амплитуды 0.1 в 15 раз выше. Увеличение амплитуды одиночного возмущения в 300 раз либо двойного в 150 раз сокращает время индукции незначительно. Ширина и форма начального возмущения практически не влияют на время индукции и скорость роста коэффициента складчатости. В момент времени 25 мс, что соответствует 90 безразмерным единицам времени в расчёте, величина коэффициента складчатости меняется от 1.006 до 1.345, что даёт в результате разброс скоростей распространения пламени 17.7% от среднего значения при различных начальных возмущениях фронта пламени. Аналогичная динамика ускорения сферически расширяющегося пламени приводит к различным значениям радиуса, при которых начинается интенсивное ускорение фронта пламени, а соответственно, определяет весь дальнейший ход развития горения. Полученный результат хорошо согласуется с экспериментальными данными.