XV Всероссийский симпозиум по горению и взрыву Суздаль - Москва, 29 ноября — 4 декабря 2020

A.V. Ostrik, D.N. Nikolaev

GAS DYNAMIC DEVICES FOR STRENGTH TESTING OF CONSTUCTIONS TO ACTION OF DIRECTED ENERGY FLUXES

Institute of Problems of Chemical Physics RAS, Chernogolovka 142432, Russia

REQUIREMENTS TO THE DEVICES MODELING MECHANICAL ACTION OF RADIATION FLUXES

The radiation type	Radiation parameters				External	Characteristics of loading	
	λ, Å	<i>t</i> , 8	<i>q</i> , MW/cm ²	W, kJ/cm ²	conditions	τ _p , s	I _p , kPa×s
Visible and infrared radiations	4×10 ³ 10 ⁵	10 ⁻⁵ 2×10 ⁻⁴	10500	110	in air	5×10 ⁻⁵ 3×10 ⁻⁴	0,12
The ultra- violet radiation	3×10 ³ 10 ⁴	10⁻⁷10⁻⁵	10 ² 10 ⁴	110	in vacuum	10⁻⁷10 ⁻⁵	0,13
The ultra-soft X-ray radiation	10300	10 ⁻¹⁰ 10 ⁻⁸	10²10 ⁷	110	in vacuum	10 ⁻⁸ 10 ⁻⁶	0,15
	100300	10 ⁻¹¹ 10 ⁻⁸	10 ² 10 ⁷	0,11	after passing air environment	10 ⁻⁸ 10 ⁻⁶	0,050, 5
The soft X-ray radiation	0,610	10 ⁻⁸ 10 ⁻⁷	10 ³ 5×10 ⁵	0,15	in vacuum	5×10 ⁻⁷ 5×10 ⁻⁶	0,073
The hard X-ray radiation	0,1510	5×10 ⁻⁹ 5×10 ⁻⁸	2×10 ³ 10 ⁶	0,15	in vacuum	10 ⁻⁸ 5×10 ⁻⁸	0,054
					in vacuum and the barrier containing heavy chemical elements	5×10 ⁻⁷ 5×10 ⁻⁶	0,15
	0,1510	10 ⁻⁶ 10 ⁻⁵	1010 ³	0,31	after passing air environment	10 ⁻⁶ 10 ⁻⁵	0,021

EXPLOSIVE DEVICES FOR NON-STATIONARY LOADING

The charge equidistantly placed above the surface

The charge placed with the specified volume distribution above the surface

The shock tube of explosive action

The charge located in contact with the surface by separate sectors

The volume-distributed commulative charge

The shock tube of explosive action with body of revolution

Р_{max}=10²÷10⁵ кг/см² τ =10⁻⁶÷10⁻⁴ с

Р_{max}=10÷10² кг/см² τ =10⁻⁴÷10⁻³ с

N=1 ÷3 P_{max}=10÷10² κг/см² τ =10⁻⁵ ÷10⁻⁴ c, $\tau_{c\pi}$ <10⁻³c

Р_{max1}=10÷10³ кг/см² Р_{max1}/ Р_{max2}=2÷10 τ=10⁻⁵÷10⁻⁴ с

 P_{max1} =10÷10² кг/см² P_{max1} / P $_{max2}$ =2÷10 τ =10⁻⁴÷10⁻³ с

N=1 ÷3, P_{max1}=10÷10²κг/см² P_{max1}/ P_{max2}=2÷10 τ=10⁻⁵÷10⁻⁴ c, τ_{cл}<10⁻³c

NEW EXPLOSIVE DEVICES FOR IMPULSE LOADING

RIBBON CHARGE

CONTACT CHARGE WITH THE CONTROLLED INITIATION

3

HONEYCOMB

VERIFICATION OF NEW DEVICE

Circular deformations ε vs time t: a) comparison of circular deformations at $\varphi = 0$ measured by various sensors (1 is by the KB-10-200 strain sensor, 2 is by the BF350-3AA strain sensor); b) 1 is $\varphi = 90$, 2 is $\varphi = 180$

CONCLUSIONS

A computing-experimental method of confirming the performance of a multilayer porous package for protection of the thin-walled composite constructions of rocket and space engineering (RSE) is proposed.

Explosive technologies can be successfully applied to modeling of the mechanical action of energy fluxes of different physical nature at the RSE. At present there is a tested set of explosive gas-dynamic devices and a set of techniques to measure the parameters of response for carrying out experimental investigations of strength of thin-walled composite constructions of RSE in a wide range of spatial-time characteristics of lateral non-stationary load.

The proposed two new explosive devices for generation of low-impulse loads significantly expanded the capabilities of this set for testing of thin-walled constructions.

It is obtained that when investigating the shell stage of deformation of fiberglass thinwalled constructions, the use of wire and foil strain sensors to measure the deformations provides the close results.

8