ХЕМИЛЮМИНЕСЦЕНЦИЯ КОМПЛЕКСОВ ЛАНТАНОИДОВ В РЕАКЦИЯХ С ОРГАНИЧЕСКИМИ ПЕРОКСИДАМИ

Казаков Д.В., Сафаров Ф.Э.

ИОХ УНЦ РАН, г. Уфа

Окисление орг. соединений

 $2HR^{\bullet} + O_2 \longrightarrow 2HROO^{\bullet} \longrightarrow R = O + O_2 + HROH$ перенос энергии $R = O^* Eu(TTA)_3 \cdot Phen \longrightarrow hv (Eu^{3+})$

Распад диоксетанов

Хемилюминесценция в реакции диметилдиоксирана З с *β*-дикетонатными комплексами европия

Рис. 1. Кинетика затухания XЛ (1) и расходования диметилдиоксирана (2) в реакции с Eu(FOD)₃. (ацетон, 20 С, [Eu(FOD)₃] = $1 \cdot 10^{-3}$ M, [ДМД] = $1.4 \cdot 10^{-2}$ M, N₂).

FOD - 2.2 - диметил-6.6.7.7.8.8.8-гептафтор-3.5-октандион

Рис. 2. 1 - Спектр люминесценции Eu(FOD)₃ (ацетон, 20 C, $\lambda_{B036.}$ =390 нм). 2 - Спектр люминесценции продуктов реакции Eu(FOD)₃ с ДМД (ацетон, 20 C, [Eu(FOD)₃]= 3·10⁻³ M, [ДМД]₀=3·10⁻² M, $\lambda_{B036.}$ =390 нм). 3 - Спектр ХЛ, записанный в реакции ДМД с Eu(FOD)₃ (ацетон, 50 C, [Eu(FOD)₃]₀= 5.0·10⁻³ M, [ДМД]₀=1.2·10⁻² M, N₂).

Рис. 3. 1 - Спектр поглощения исходного $Eu(FOD)_3$. 2 – Спектр поглощения реакционной смеси, записанный после реакции $Eu(FOD)_3$ с ДМД (CCl₄, 20 C, $[Eu(FOD)_3]_0 = 5 \cdot 10^{-3}$ M, $[ДМД]_0 = 3 \cdot 10^{-2}$ M, N₂).

Таблица 1. Количество ДМД, прореагировавшего в ХЛ реакции с $Eu(L)_3$ (ацетон, 20 С, $[Eu(L)_3]_0 = 1 \cdot 10^{-3} \text{ M}, \text{ N}_2$).

Eu(L) ₃	Начальная концентрация ДМД [ДМД] ₀ ·10 ³ , М	Прореагировавший пероксид [ДМД]·10 ³ , М	Соотношение ДМД/EuL ₃
Eu(FOD) ₃	6.0	5.9	5.9/1
	10.0	6.1	6.1/1
	20.0	6.5	6.5/1
Eu(DPM) ₃	6.0	5.9	5.9/1
	10.0	5.9	5.9/1
	15.0	6.1	6.1/1
Eu(TTA) ₃	8.0	6.0	6.0/1
	12.0	5.9	5.9/1
	15.0	6.1	6.1/1
$Eu(TFC)_3$	6.0	3.0	3.0/1

Таблица 2. Хемилюминесцентные характеристики в реакции ДМД с Eu(L)₃. (ацетон, 20 С, $[Eu(L)_3]_0 = 1.10^{-3}$ М, $[ДМД]_0 = 6.10^{-3}$ М, N_2).

Eu(L) ₃	Светосумма, фотон/мл	Выход ХЛ, эйнштейн∙моль-1	Максимальная интенсивность, фотон·с/мл
Eu(FOD) ₃	2.17·10 ¹²	6.0·10 ⁻⁷	8.01·10 ¹¹
Eu(TTA) ₃	1.37·10 ¹⁰	3.8·10 ⁻⁹	7.15·10 ⁹
Eu(DPM) ₃	1.32·10 ¹¹	3.6·10 ⁻⁸	6.74·10 ¹⁰
Eu(TFC) ₃	1.76·10 ¹²	4.9·10 ⁻⁷	2.09·10 ¹¹

2 - теноилтрифторацетон

2.2 - диметил-6.6.7.7.8.8.8-гептафтор-3.5-октандион дипивавоилметан (2.2.6.6-тетраметил-3.5-гептандио 3-(трифторметилгидроксиметилен)камфорат

Предложен новый тип хемилюминесценции лантаноидов, согласно которому возбуждение европия происходит за счет энергии, выделяющейся при окислении лигандов комплекса.

отличие спектров поглощения исходного комплекса и продукта реакции с ДМД

отличие спектров флуоресценции исходного комплекса и продукта реакции с ДМД

отличие спектров ЯМР и ИК исходного комплекса и продукта реакции с ДМД

кинетика хемилюминесценции

Хемилюминесценция в системе: Eu(NO₃)₃/ KHSO₅/ацетон

Распад кислоты Каро¹ в растворе сопровождается хемилюминесценцией в ближней инфракрасной и видимой области спектра.

Интенсивность хемилюминесценции в видимом спектральном диапазоне в реакции KHSO₅ с ацетоном в водном растворе, очень мала, а выход XЛ, даже в присутствии активатора свечения – нитрата европия, составляет менее чем:

*η*_{хл} < 1.0×10⁻¹¹ эйнштейн/моль.

¹ Источник KHSO₅ – оксон: 2KHSO₅·KHSO₄·K₂SO₄

В твердой фазе хемилюминесценция может наблюдаться невооруженным глазом:

Рис. 4. Фотография свечения, наблюдающегося при добавлении 0.5 мл жидкого ацетона к смеси порошков 50 мг оксона (0.145 ммоль) и 50 мг $Eu(NO_3)_3 \cdot 6H_2O$ (0.112 ммоль) при 200 С.

💶 Эмиттер свечения – возбужденный ион Eu*(III) (λ_{max} = 615 нм) 🤘

Рис. 5. Спектр хемилюминесценции, записанный при взаимодействии 0,1 мл жидкофазного ацетона со смесью порошков 20 мг оксона (0.058 ммоль) и 17 мг $Eu(NO_3)_3$ ·6H₂O (0.038 ммоль) при 90 С.

 $\eta_{XI} = 2.2 \times 10^{-7}$ эйнштейн/моль

ЯМР анализ реакционной смеси, выполненный после завершения спада ХЛ, выявил наличие ацетона и метилацетата - продукта изомеризации диметилдиоксирана.

Хромато-масс-спектрометрическое исследование ХЛ системы

Температурные зависимости времени жизни флуоресценции европия в Eu(NO₃)₃·6H₂O

15

Рис. 6. Температурные зависимости времени жизни ФЛ (τ) Eu^{*}(III): **1** - Eu₂(SO₄)₃·8H₂O; **2** - Eu(NO₃)₃·6H₂O (– нагрев, – охлаждение).

★ - $\tau \Phi \Lambda$ расплава Eu(NO₃)₃·6H₂O после добавления ацетона при 90 С.

Температурные зависимости времени жизни Eu(III)* в смеси: Eu(NO₃)₃·6H₂O/KHSO₅

16

Рис. 7. Температурные зависимости (τ) ФЛ Eu(III)^{*} в смеси порошков Eu(NO₃)₃·6H₂O и KHSO₅: **1** – нагрев; **2** – повторный нагрев.

Дериватографическое исследование

Рис. 8. Типовые дериватограммы образцов Eu(NO₃)₃·6H₂O (а), нитрата европия с оксоном (б) и оксона (в). Скорость нагрева 5 С в минуту.

Хемилюминесценция при распаде эндопероксида 1,4-диметилнафталина в присутствии β-дикетонатных комплексов лантаноидов на поверхности силикагеля

Рис. 9. 1 - Спектр хемилюминесценции при распаде ЭДМН на поверхности силикагеля в присутствии Ln(TTA)₃·2H₂O (90 °C; [ЭДМН] = $1 \cdot 10^{-4}$ моль/г; [Ln(TTA)₃·2H₂O] = $1 \cdot 10^{-4}$ моль/г). 2 - Спектр фотолюминесценции Ln(TTA)₃·2H₂O, сорбированного на поверхности силикагеля. (силикагель: 0.160 мм; 600 м²/г).

Рис. 10. Зависимость интенсивности свечения при $\lambda_{\text{мах}}$ 1000 нм (Yb(III)) и 615 нм (Eu(III)), возникающего при распаде ЭДМН на поверхности силикагеля в присутствии комплексов лантаноидов от природы лиганда (силикагель: 0.125 – 0.160 мм; 600 м²/г; 90 °C; [ЭДМН] = 1.0·10⁻⁴ моль/г; [Ln(TTA)₃·2H₂O] = 0.4·10⁻⁴ моль/г).

Соотношение квантовых выходов ФЛ	Соотношение интенсивности ХЛ	
$\varphi_{Eu(TTA)3}/\varphi_{Eu(FOD)3}/\varphi_{Eu(AA)3} = 0.9/1.2/0.1$ % (толуол)	I /I /I = 1/1.70/0.01	
$\left[\phi_{\text{Eu(TTA)3}}/\phi_{\text{Eu(FOD)3}}/\phi_{\text{Eu(AA)3}}=0.90/1.80/0.05\%\text{ (CH}_{3}\text{CN)}\right]$	$I_{Eu(TTA)3}/I_{Eu(FOD)3}/I_{Eu(AA)3} = 1/1.70/0.01$	
$\phi_{Yb(TTA)3}^{}/\phi_{Yb(AA)3}^{} = 100/21 \% (CH_3CN)$	$I_{Yb(TTA)3}/I_{Yb(AA)3} = 1/0.02$	

ф` - относительный квантовый выход.

Величина энергетического зазора между основным и резонансным уровнями лантаноида: у Yb(III) - 10250 см⁻¹, у Eu(III) - 12300 см⁻¹, у Nd(III) - 5400 см⁻¹.

Рис. 11. Максимальная интенсивность ХЛ при распаде ЭДМН на поверхности силикагеля в присутствии комплексов металлов; (силикагель: 0.125 - 0.160 мм; $600 \text{ м}^2/\Gamma$; 90 C; [ЭДМН] = $1 \cdot 10^{-4}$ моль/г; [Ln(TTA)₃·nH₂O] = $1 \cdot 10^{-4}$ моль/г).

Таблица 4. Характеристики ХЛ, возникающей в реакции распада ЭДМН на силикагеле в присутствии нанесенных на него комплексов Eu(L)₃.

Eu(L) ₃	Светосумма, фотон/мл	Выход ХЛ, эйнштейн∙моль ⁻¹	Максимальная интенсивность, фотон·с/мл
Eu(FOD) ₃	4.0·10 ¹⁴	6.7·10 ⁻⁵	1.3·10 ¹⁴
Eu(TTA) ₃	1.7·10 ¹⁴	2.8·10 ⁻⁵	4.0·10 ¹³

Таблица 5. Относительные выходы ХЛ при распаде ЭДМН на поверхности силикагеля в присутствии нанесенных на него комплексов Nd(L)₃ и Yb(L)₃.

Ln(L) ₃	Относительный выход ХЛ, %
Yb(TTA) ₃	100.0
Yb(FOD) ₃	44.4
Yb(AA) ₃	20.8
Nd(TTA) ₃	51.1
Nd(FOD) ₃	24.4
Nd(AA) ₃	25.5

Эффект 1.4-диазабицикло[2.2.2]октана (ДАБЦО) 23

Хемилюминесценция Ln^{*}(III), наблюдаемая при взаимодействии эндопероксида со всеми исследуемыми хелатами: Ln(TTA)₃·2H₂O, Ln(AA)₃·3H₂O, Ln(FOD)₃·nH₂O, где Ln(III) = Nd, Eu, Yb, существенно подавляется добавками ДАБЦО - известного тушителя ¹O₂.

Рис. 12. Зависимость I_{Makc} от концентрации ДАБЦО при распаде ЭДМН на поверхности силикагеля в присутствии Yb(TTA)₃·2H₂O. (60 C; [Yb(TTA)₃·2H₂O] = 1.0·10⁻⁴ моль/г; [ЭДМН] = 1.2·10⁻⁴ моль/г).

ДАБЦО не влияет на ФЛ комплексов Ln(III)

Рис. 13. Спектры ФЛ сорбированного на силикагеле $Nd(TTA)_3 \cdot 2H_2O$ в присутствие (1) и в отсутствии (2) ДАБЦО ([ДАБЦО] = $1.5 \cdot 10^{-4}$ моль/г; $[Nd(TTA)_3 \cdot 2H_2O] = 1.0 \cdot 10^{-4}$ моль/г).

Синглетный кислород играет ключевую роль в обнаруженной хемилюминесценции.

 Выявлена и исследована ХЛ, возникающая в видимой области спектра при взаимодействии диметилдиоксирана с рядом β - дикетонатных комплексов европия (Eu(TTA)₃, Eu(FOD)₃, Eu(DPM)₃, Eu(TFC)₃) в растворе. Предложен новый тип хемилюминесценции лантаноидов, согласно которому возбуждение европия происходит за счет энергии, выделяющейся при окислении пероксидом лигандов координационной сферы металла.
Определен выход хемилюминесценции в реакции диметилдиоксирана с Eu(TTA)₃, Eu(FOD)₃, Eu(DPM)₃, Eu(TFC)₃, который лежит в диапазоне 3.8·10⁻⁹ – 6.0·10⁻⁷ эйнштейн/моль и коррелирует с квантовым выходом люминесценции комплексов.

3. Обнаружена новая яркая твердофазная хемилюминесцентная реакция, которую можно наблюдать невооруженным глазом: взаимодействие ацетона (газовая фаза) со смесью порошков пероксимоносульфата калия и гексагидрата нитрата европия.

Идентифицирован эмиттер свечения – возбужденный ион европия $(\lambda_{max.} = 615 \text{ нм})$, определен выход ХЛ ($1.0 \cdot 10^{-7}$ эйнштейн/моль) и предложен механизм реакции, согласно которому взаимодействие KHSO₅ с ацетоном происходит в комплексе Eu(NO₃)₃, а ключевую роль в хемилюминесценции играет образование диоксиранового интермедиата.

4. Показано, что время жизни (τ) флуоресценции Eu(III) в кристаллогидрате Eu(NO₃)₃·6H₂O увеличивается, как при добавлении ацетона при 90 °C (с 60 до 100 мкс), так и при нагреве комплекса в присутствии твердофазного KHSO₅ (от 175 мкс при 20 °C до 270 мкс при 120 °C), обратное охлаждение смеси порошков до комнатной температуры приводит к увеличению значения τ европия до 420 мкс. Данные люминесцентно-кинетического анализа свидетельствуют о возможности внедрения оксона и ацетона в координационную сферу европия, что подтверждает вывод о внутрикомплексном протекании хемилюминесцентной реакции ацетона с KHSO₅/Eu(NO₃)₃·6H₂O (вывод № 3).

5. Выявлена ХЛ в видимой и инфракрасной области спектра, возникающая при распаде эндопероксида 1,4-диметилнафталина, нанесенного на поверхность силикагеля в присутствии ряда β-дикетонатных комплексов Nd(L)₃, Yb(L)₃, и Eu(L)₃, где L – TTA, FOD, AA. Показано, что эмиттерами свечения являются возбужденные ионы лантаноидов λ_{max.} = 870 и 1060 нм (для Nd(III)), 990 нм (для Yb(III)) и 615 нм (для Eu(III)). Установлено, что ключевую роль в механизме ХЛ играет синглетный кислород, образующийся при разложении эндопероксида.

молодые доктора наук - 2009

СОВЕТ ПО ГРАНТАМ ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ для поддержки молодых российских ученых и ведущих научных школ

В.П. Казаков 1934-2010

перенос энергии

2) ${}^{1}O_{2} + Ln(L)_{3} \longrightarrow Ln^{*}P_{3} \longrightarrow Ln^{*}P_{3} \longrightarrow hv$

Р - продукт окисления лиганда

SDBS No:

Figure 3. Rare-earth complexes of ligand L_{II} (Ln = Y, La, Nd, Sm, Eu, Er, Yb).

Handbook on the Physics and Chemistry of Rare Earths Vol. 35 edited by K.A. Gschneidner, Jr., J.-C.G. Bünzli and V.K. Pecha. © 2005 Elsevier B.V. All rights reserved

Fig. 22. Structure of the luminescent europium(III) β -diketonate complex [Eu(tta)₃(phen)].

Chem. Rev. 2009, 109, 4283-4374

Figure 2. Structure of the luminescent europium(III) β -diketonate complex [Eu(tta)₃(phen)].

15682

Изменение ионных токов отдельных компонентов во времени и массспектры продуктов взаимодействия $KHSO_5$ и $Eu(NO_3)_3$ (a); смеси $KHSO_5$, $Eu(NO_3)_3$ и ацетона (б); и $Eu(NO_3)_3$ (в).

Рис. 3.29. Зависимость интенсивности ИК-ХЛ при распаде ЭДМН на поверхности силикагеля от времени в отсутствии (1) и в присутствии нанесенных на силикагель Nd(TTA)₃·2H₂O (2) и Yb(TTA)₃·2H₂O (3). (силикагель: 0.125–0.160 мм, 600 м²/г; 90 °C; [ЭДМН] = 1·10⁻⁴ моль/г; [Ln(TTA)₃·2H₂O] = 1·10⁻⁴ моль/г).

Спектральные характеристики фотоэлектронного умножителя ФЭУ-83.

Figure 1. Emission spectra of ¹O₂ in nonaromatic solvents

Nd(TTA)₃·2H₂O

