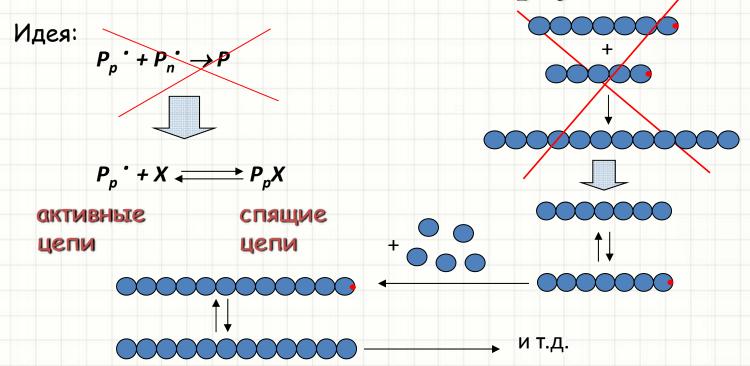
Московский Государственный Университет имени М.В.Ломоносова Химический факультет

> Кафедра высокомолекулярных соединений Лаборатория полимеризационных процессов

Новые возможности радикальной полимеризации в контролируемом синтезе полимеров заданной архитектуры

Черникова Е.В.


Исторический экскурс

- 1. Первый синтез полимеров 19 век.
- 2. Получение синтетического каучука 1920-е г.г.
- 3. Открытие живой анионной полимеризации 1950-е г.г.
- 4. Открытие живой катионной полимеризации 1970-е г.г.
- 5. Открытие живой радикальной полимеризации 1970-е г.г.

Классическая радикальная полимеризация

инициирование $I oup 2\,R_1^{\cdot}$ $R_1^{\cdot} + M oup P^{\cdot}$ рост $P^{\cdot} + nM oup P_{n+1}^{\cdot}$ обрыв $P_p^{\cdot} + P_n^{\cdot} oup P$ передача $P^{\cdot} + SH oup PH + S^{\cdot}$

Псевдоживая (қонтролируемая) радиқальная полимеризация Reversible-deactivation radical polymerization

"Оживление" цепей и возможность участия в росте цепи на протяжении всего процесса полимеризации

1. Обратимое ингибирование

радикал роста обратимо взаимодействует со стабильным или малоактивным радикалом с образованием аддукта, содержащего лабильную концевую группу, способную отщепляться от конца цепи под действием нагревания или облучения

$$\begin{array}{c|c} & & & \\ & & &$$

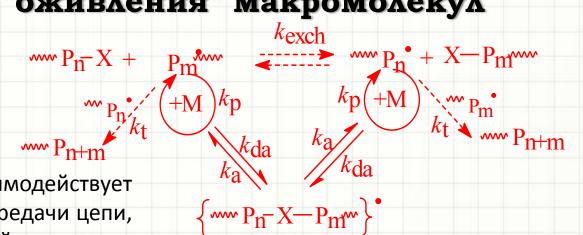
Стабильные радикалы

Кобальт порфирины

Спиновые ловушки

 $\underset{k_{da}}{\underbrace{\qquad \qquad \qquad \qquad \qquad }} k_{a}$

2. Обратимый перенос атома


$$k_a$$
 k_{da}
 k_{da}
 k_{p}
 k_{t}
 k_{m}
 k_{m}
 k_{m}
 k_{m}
 k_{m}
 k_{m}
 k_{m}

макрорадикал обратимо взаимодействует со специальной добавкой (катализатором) посредством окислительновосстановительной реакции

полимеризация с переносом атома (ATRP)

в качестве катализатора используют соединение переходного металла, а в качестве инициатора обычно алкилгалогенид (чаще бромид), химическая структура которого близка к структуре полимеризующегося мономера

3. Обратимая передача цепи

радикал обратимо взаимодействует с агентом обратимой передачи цепи, содержащим лабильный атом или группу атомов

Вырожденная передача цепи:

Алкилгалогениды
$$CH_2=CH+(CH_3)_2CN=NC(CH_3)_2+CH_3CH_3$$
 Кобальт порфирины

Органические соединения Те, Ті, Аѕ, Ѕв или Ві

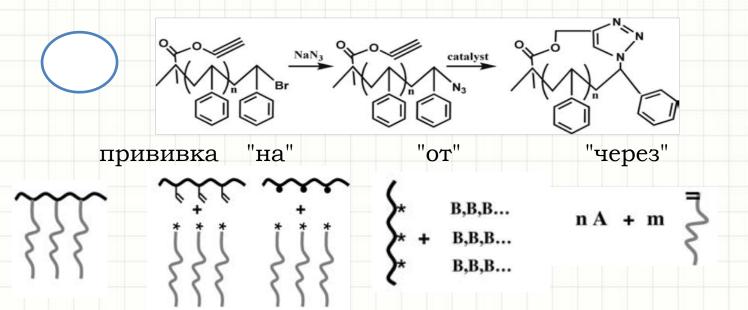
Обратимая передача цепи

$$R^{\bullet} + X X - R \longrightarrow R^{\bullet} X - R \longrightarrow X X - R^{\bullet} + R^{\bullet}$$

4. Обратимый спиновый $\{ w^n P_n Z \}^{\bullet}$ захват

радикал роста взаимодействует со специальной добавкой с образованием стабильного радикала

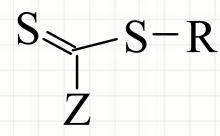
Шиокетоны


характерным является рост молекулярной массы с увеличением конверсии, но одновременно и уширение ММР. Недостаток — неспособность продукта реакции возобновить живой процесс при добавлении свежей порции мономера. Полимер образуется исключительно за счет реакции квадратичного обрыва радикала роста.

Возможности контролируемой радикальной полимеризации

- ✓ Контроль скорости полимеризации
- √ Узкое ММР
- √ Контроль топологии макромолекул
- ✓ Контроль микроструктуры цепи и композиционной однородности сополимеров
- ✓ Контролируемая функциональность макромолекул

Как контролировать топологию?


"click chemistry" — простые в исполнении реакции, протекающие стереоспецифично и с высоким выходом в легко удаляемых растворителях, с образованием легко отделяемых побочных продуктов

Где в России исследуют закономерности псевдоживых процессов?

- Полимеризация под действием стабильных радикалов: низкие скорости, высокие температуры, узкий круг мономеров (МГУ, ИПХФ, ННГУ, Новосибирский томографический центр)
- Полимеризация с переносом атома: широкий круг мономеров, мягкие условия проведения процесса, широкие возможности макромолекулярного дизайна, необходимость очистки от соединений металлов (ИВС РАН, ННГУ)
- Полимеризация с обратимой передачей цепи: широкий круг мономеров, мягкие условия проведения процесса, широкие возможности макромолекулярного дизайна, макромолекулы содержат тиокарбонильный фрагмент, придающий окраску олигомерам (МГУ, ННГУ)

Как подходить к выбору условий для синтеза макромолекул с заданными характеристиками?

reversible addition –
fragmentation chain
transfer
(RAFT)
polymerization

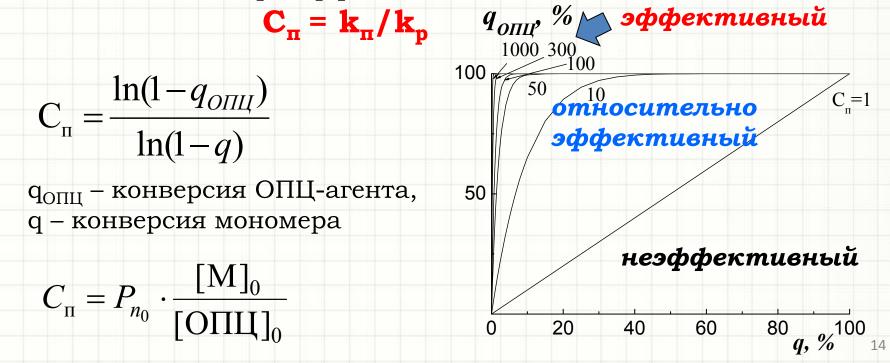
псевдоживая
полимеризация с
обратимой передачей
цепи (ОЛЦ) по
механизму
присоединения—
фрагментации

Реакции <u>обратимой передачи цепи</u> (ОПЦ) по механизму присоединения — фрагментации

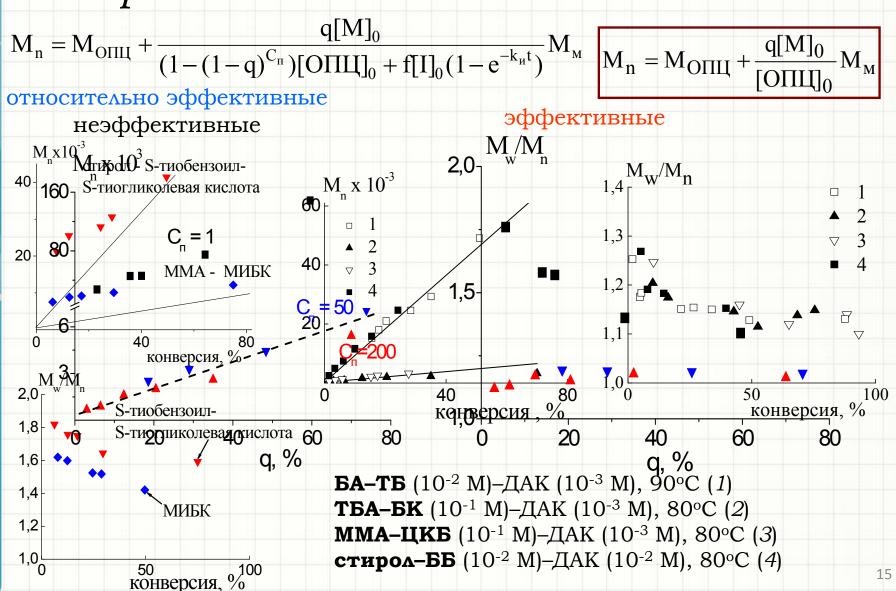
1. взаимодействие макрорадикала с ОПЦ-агентом (pre-equilibrium)

$$P_n$$
 + P_n - P_n

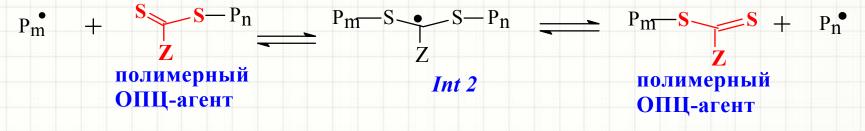
2. взаимодействие макрорадикала с полимерным ОПЦ-агентом

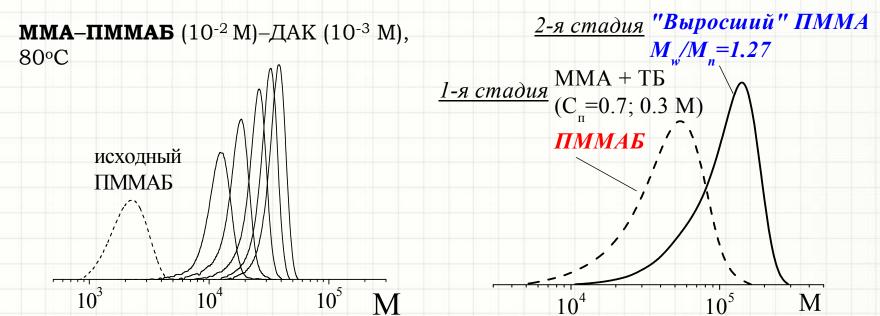

$$P_{m}^{\bullet}$$
 + $S - P_{n}$ $P_{m} - S - P_{n}$

Что нужно знать об ОПЦ-агенте?


1. Понятие об эффективности ОПЦ-агента

 $C_{\pi}=1$

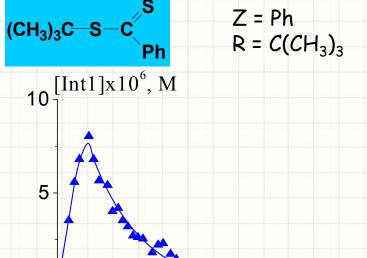

Количественная мера эффективности ОПЦ-агента:

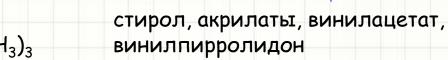


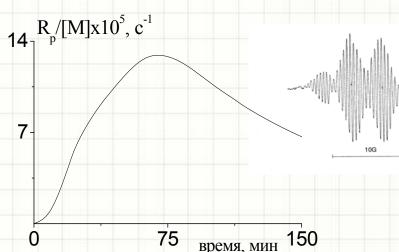
Как эффективность низкомолекулярных ОПЦ-агентов влияет на контроль молекулярно-массовых характеристик полимеров?

Эффективность полимерных ОПЦ-агентов

Эффективность всех изученных полимерных ОПЦ-агентов на 1-2 порядка выше, чем низкомолекулярных.


Важное практическое применение: для проведения контролируемого синтеза полимера существует возможность использования и неэффективного в полимеризации данного мономера ОПЦ-агента


16


Что нужно знать об ОПЦ-агенте?

2. Стабильность радикальных интермедиатов и ее влияние на кинетику полимеризации

$$P_n$$
 + $S = S = R$ $P_n = S = S = R$ $P_n = S = S = R$ $P_n = S = S = R$ ОПЦ-агент Ino полимерный ОПЦ-агент Ino Ino

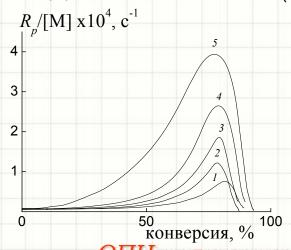
17

Макрорадикалы запасаются в форме неактивного интермедиата Скорость полимеризации повышается только после исчезновения

Стабильность интермедиатов:

75 время, мин 150

Тритиокарбонаты **Z**= -SR < дитиобензоаты **Z**= -Ph MMA < стирол < акрилаты < BA ~ BП ↑ с ↓ температуры


Что нужно знать об ОПЦ-агенте?

3. Кинетика ОПЦ-полимеризации

ОПЦ-полимеризация, протекающая без замедления

стирол–ДАК–БК (\mathbf{Z} = -SCH₂Ph, \mathbf{R} = -CH₂Ph) **ММА–ДАК–МИК** (\mathbf{Z} = -SC(CH₃)₂COOCH₃, \mathbf{R} = -C(CH₃)₂COOCH₃) **ММА–ДАК–дитиобензоат** (\mathbf{Z} = -Ph, **ЦКБ**, **ЦИБ**, **ББ** или **ТБ**)

стирол-ДАК-ПСК ММА-ДАК-ПММАК ММА-ДАК-ПММАБ

№	[ОПЦ] × 10 ³ ,М	$(R_{p}/[M])_{max}/(R_{p}/[M])_{0}$	$M_n \times 10^{-3}$	M_w/M_n
4	3	35	260	1.60
3	10	27	98	1.69
2	30	19	42	1.65
1	100	13	16	1.72
5	0	49	750	2.73

ОПЦ-полимеризация, протекающая с замедлением

стирол-ДАК-ББ (ПСБ)

БА-ДАК-ТБ (ПБАБ)

стирол-ДАК-ТБ (ПСБ)

N-винилпирролидон-ДАК-ТБ

ВА-ДАК-ТК (ПВАК)

БА-ДАК-БК (ПБАК)

тБА-ДАК-БК (ПтБАК)

N-винилпирролидон-ДАК-ТК (или БК)

Часть I

ТОМОПОЛИМЕРИЗАЦИЯ по механизму обратимой передачи цепи

Общие подходы к выбору ОПЦ-агента и условиям проведения синтеза:

- 1. Информация об эффективности ОПЦ-агента для данного мономера.
- 2. Информация о стабильности радикальных интермедиатов.
- 3. Выбор соотношения ОПЦ-агент/инициатор (>> 1).
- 4. Выбор температуры процесса.
- 5. Выбор концентрации мономера.

Практическое применение полученных знаний об ОПЦ-процессе

- 1. Контролируемая полимеризация винилацетата
- 2. Синтез олигомерной полиакриловой кислоты полимеризацией в массе
- 3. Синтез олигомерного поливинилпирролидона полимеризацией в массе
- 4. Синтез растворимого поливинилсукцинимида
- 5. Контролируемая полимеризация акрилонитрила
- 6. Контролируемый синтез жидкокристаллических полимеров

Часть II.

БЛОК-СОПОЛИМЕРИЗАЦИЯ по механизму обратимой передачи цепи

Блок-сополимеризация с использованием метода ОПЦ

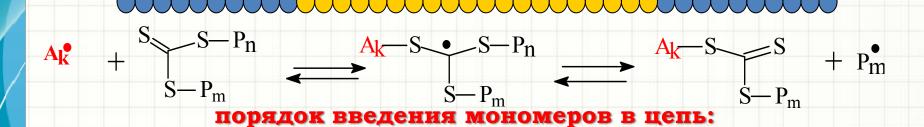
- □ Одностадийный синтез ди- и триблок-сополимеров
- □ Двухстадийный синтез диблок-сополимеров
- □ Двухстадийный синтез триблок-сополимеров
- □ Синтез мультиблок-сополимеров

Одностадийный синтез диблок-сополимеров

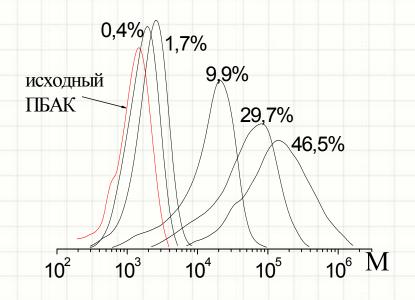
Монофункциональный ОПЦ-агент – рост цепи в один конец

стирол > малеиновый ангидрид

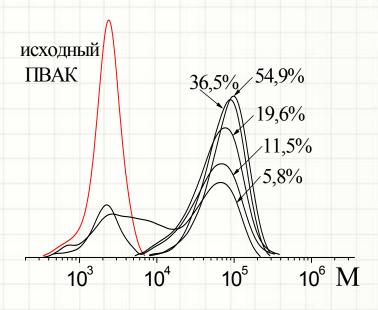
Одностадийный синтез триблок-сополимеров


<u>Би</u>функциональный ОПЦ-агент – <u>рост цепи в два конца</u>

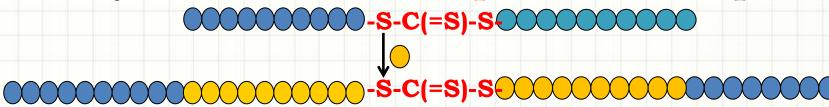
стирол > малеиновый ангидрид


Двухстадийный синтез триблок-сополимеров

Бифункциональный ОПЦ-агент - рост цепи в два конца


ПБА-ПВА-ПБА

ПБАК (M_n =720, M_w/M_n = 1.14) [ПБАК]=10⁻² M, [ДАК]=4×10⁻³ M



ПВА-ПБА-ПВА

ПВАК (M_n =1950, M_w/M_n = 1.24) [ПВАК]= 10^{-2} М, [ДАК]= 10^{-3} М

Двухстадийный синтез триблок-сополимеров



\$\$ \$\$\$00000000000000000000000000000000	11000000
	X X X X X X X X X X X X X X X X X X X

-(CH ₂) ₅ -C O O O O O O O O O O O O O O O O O O O	A.
1 2 3 50	-(

Объект	Переход*	Т, ° С (пик)
Обскі	Переход	
ПА	N-I	93
ПХ	Ch-I	111
П(АХА)	Sm-Ch	120
	Ch-I	128
П(ХАХ)	Ch-I	119
$\Pi(A[A/X]A)$	Ch-I	114
$\Pi(X[A/X]X$	Sm-Ch	103
	Ch-I	117

/	<u> </u>	$\left \right _n$	+		\overline{m}		$\left.\right _{n}$	
	0	O	0	O		0	O	
				(ĊH	2)5			
H ₃ C.	N		C 		O O		N/	CH ₃
						1		1
							\	
	N _N		Ċ		O;	N	N N	
			ſ		ì		\	
			Į	Y	IJ			
	C	N		0	°CH ₃		CN	
		1				CO.		

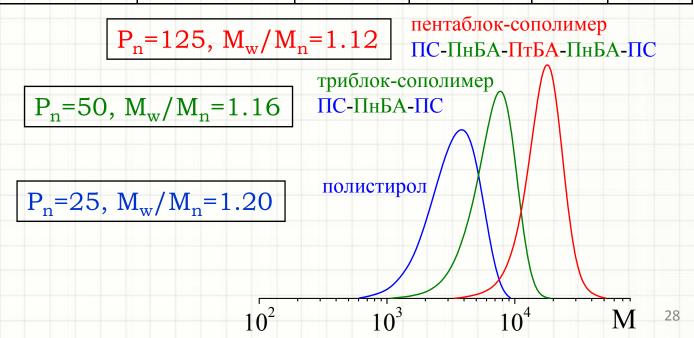
Нематическая фаза

Синтез мультиблок-сополимеров

Монофункциональный ОПЦ-агент - рост цепи в один конец

стирол и н-бутилакрилат + ДАК + цианоизпропилдитиобензоат

Полимер	Конверсия,	Время, ч	[ОПЦ], М	M_n	M_{w}/M_{n}
ПС-Б	11	16	0.2	1000	1.20
ПС-ПБА-Б	30.7	22	0.1	4100	1.09
ПС-ПБА-ПС-Б	20.8	70	0.1	9400	1.09
ПС-ПБА-ПС-ПБА-Б	47.5	50	0.05	18700	1.30
ПС-ПБА-ПС-ПБА-ПС-Б	17	38	0.03	51600	1.21

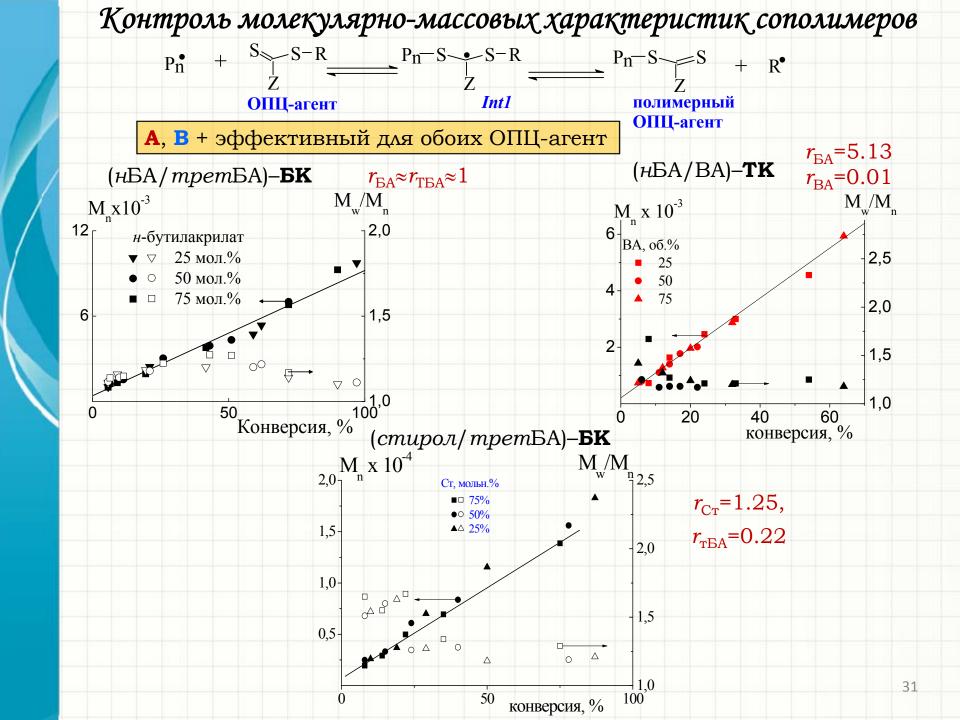

мономеры + ДАК + 2-циано-2-пропил додецил тритиоқарбонат

Полимер	Конверсия,	Время, ч	[ОПЦ], М	M_n	M_{w}/M_{n}
ПТБА-К	83	22	0.2	3500	1.15
ПТБА-ПБА-К	83	18	0.074	9500	1.39
ПТБА-ПБА-ПС-К	46	22	0.04	13300	1.93
ПТБА-ПБА-ПС-ПБА-К	60	22	0.02	31200	1.66
ПТБА-ПБА-ПС-ПБА-ПТБА-К	72	18	0.01	46500	2.01

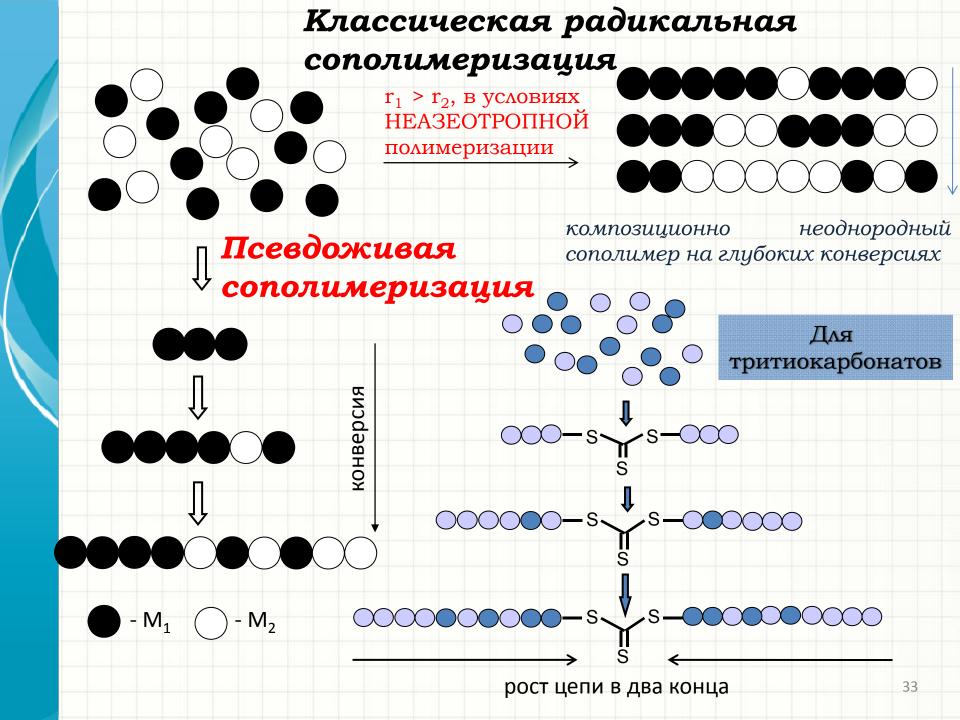
Синтез мультиблок-сополимеров

<u>Би</u>функциональный ОПЦ-агент – <u>рост цепи в два конца</u> *стирол (А) и н-бутилакрилат (В)*+ <u>дибензилтритиокарбонат</u>

Nº	Полимер	Конверсия, %	Время, ч	[ОПЦ], М	$\mathbf{M}_{\mathbf{n}}$	$M_{\rm w}/M_{\rm n}$
1	П(А)К	42	22	0.2	2200	1.27
2	П(ABA)К	15	1	0.1	2700	1.26
3	П(ABABA)К	51.4	24	0.1	8300	1.23
4	П(АВАВАВА)К	66.5	50	0.05	33500	1.15
5	П(АВАВАВАВА)К	54.3	38	0.014	60900	1.10



Подходы к проведению ОПЦ-блок-сополимеризации:


- 1. Порядок выбора мономеров в ходе синтеза блок-сополимеров определяется направлением фрагментации интермедиата.
- 2. При многостадийном синтезе блок-сополимеров необходимо учитывать образование "мертвых" цепей за счет введения инициатора.
- 3. Необходимо учитывать вероятность протекания реакций обрыва на интермедиатах, чтобы избежать потери "живых" цепей.

Часть III

СОПОЛИМЕРИЗАЦИЯ по механизму обратимой передачи цепи

Контроль молекулярно-массовых характеристик сополимеров $+ \sum_{Z} S^{-R} = P_{n} - S - S - R = P_{n} - S - S + R^{\bullet}$ Int1 полимерный ОПЦ-агент ОПЦ-агент **А**, **В** + эффективный для **А** ОПЦ-агент $(стирол/MMA)-\Pi(Cт/MMA)Б$ (стирол/ММА)-ББ $M_{\rm n} \times 10^{-3}$ 8 $r_{\rm CT}$ =0.52, $r_{\rm MMA} = 0.46$ 8 стирол стирол 4 мол.% 25 мол.% 25 50 мол.% 50 75 мол.% 40 80 Конверсия, % 0 0 40 80 Конверсия, % $M \times 10^{-3}$ 30 ¬ (тБА/4-винилпиридин)-БК $r_{\text{TBA}} = 0.04,$ ТБА, мол.% Блок 1 Блок 2 $r_{4-{ m B}\Pi} = 1.41$ 20 42 69 10 Блок 1 Блок 2 Блок 2 50 32 конверсия, %

Варианты строения градиентных сополимеров, полученных в присутствии симметричных тритиокарбонатов

трет-БА – N-винилпирролидон $r_{T\!B\!A}$ = 1.33, $r_{4\!-\!B\!I\!I}$ = 0.02

Винилацетат-БА; r_{BA} = 0.01, r_{EA} = 5.38 Винилацетат-трет-БА; r_{BA} = 0.03, r_{EA} = 3.20 Стирол-винилацетат; r_{Cm} = 60, r_{BA} = 0.06

AH-стирол; $r_{AH} = 0.37$, $r_{Cm} = 0.07$

 $AH-MA; r_{AH}=1.5, r_{MA}=0.84$

AH-БA; r_{AH} = $r_{БA}$ = 1

Стирол-БА; r_{Cm} = 0.88, r_{EA} = 0.20

Стирол-трет-БА; $r_{\rm Cm}$ = 1.25, $r_{\rm EA}$ = 0.22