

ПОДМЕНА РАДИКАЛА-НОСИТЕЛЯ ЦЕПИ КАК ИНСТРУМЕНТ МАКРОМОЛЕКУЛЯРНОГО ДИЗАЙНА

Силантьев М.А., Курочкин С.А., Перепелицина Е.О., Грачев В.П.

Черноголовка - 2013

Подмена радикала-носителя цепи

Ингибированная полимеризация

Инициирование

1. Берлин А.А., Кефели Т.Я., Королев Г.В. Полиэфиракрилаты. Москва: Наука, 1967. С. 216.

Ингибированная полимеризация в присутствии вещества А Инициирование $I \longrightarrow R_i \xrightarrow{+ M} R_M$ Рост цепи $R_{M} + M \xrightarrow{K_{MM}} R_{M}$ R_{M} + A $\xrightarrow{K_{MA}}$ R_{A} K_{AM}→ R_M R_^. + M • Обрыв цепи $R_{M} + X \xrightarrow{k_{MX}}$ нерадикальные продукты $k_{\Delta X} >$

Высокоразветвленные полимеры и макромолекулярный дизайн

Радикальная полимеризация стирола и дивинилбензола в присутствии кислорода

Мономеры

Стирол

Дивинилбензол (разветвитель)

Вещество А

O=O

Рост цепи

$$R' + M \xrightarrow{k_{\rho}} R'$$

 $k_p \approx 10^2$ л/моль с R· + O₂ $\xrightarrow{k_{p-O}}$ ROO·

k_{p-O} ≈ 10⁸-10⁹ л/моль с

 $ROO'+M \longrightarrow ROOM'$

Передача цепи

R'+R'H
$$\xrightarrow{k_{tr}}$$
 RH+R'

 $\mathsf{ROO}^{\bullet}+\mathsf{R'H} \xrightarrow{K_{tr-O}} \mathsf{ROOH}+\mathsf{R'}^{\bullet}$

 $k_{tr-O} / k_{tr} \approx 50$

Рис. 2. Схема установки для проведения окислительной полимеризации.

Таблица 1. Начальные условия синтеза, средние скорости полимеризации $(R_p/[M])_1$ и $(R_p/[M])_2$ и конверсия мономеров С при времени 300 мин. $[CT]_0 = 3.5$ М, $T = 95^{\circ}$ С. Растворитель – о-ксилол.

NՉ	[АИБН] ₀ , М	V _{O2} 10 ³ , М/мин	(<i>R_p/</i> [M]) ₁ 10 ³ , мин ⁻¹	(<i>R_p/</i> [M]) ₂ 10 ³ , мин ⁻¹	С
13	0.01	6.0	1.7 0.5	0.82 0.1	0.26
14		8.4	1.8 0.7	2.07 0.1	0.44
15		12.6	1.9 0.1	4.5 0.7	0.66
16		33.6	4.4 0.6	5.5 0.6	0.75
17		62.4	4.2 0.8	6.8 1.2	0.80
18	0.05	6.0	8.6 1.4	1.8 0.2	0.61
19		8.4	7.4 1.6	3.1 0.3	0.69
20		62.4	6.3 2.4	5.2 0.3	0.81
21	0.10	6.0	12.6 2.6	1.7 0.1	0.70
22		12.6	11.0 3.8	3.8 0.2	0.81

Таблица 1. Начальные условия синтеза, средние скорости полимеризации $(R_p/[M])_1$ и $(R_p/[M])_2$ и конверсия мономеров С при времени 300 мин. $[CT]_0 = 3.5$ М, $T = 95^{\circ}$ С. Растворитель – о-ксилол.

N⁰	[АИБН] ₀ , М	V _{O2} 10 ³ , М/мин	(<i>R_p</i> /[M]) ₁ 10 ³ , мин ⁻¹	(<i>R_p/</i> [M]) ₂ 10 ³ , мин ⁻¹	С
13		6.0	1.7 0.5	0.82 0.1	0.26
14	0.01	8.4	1.8 0.7	2.07 0.1	0.44
15		12.6	1.9 0.1	4.5 0.7	0.66
16		33.6	4.4 0.6	5.5 0.6	0.75
17		62.4	4.2 0.8	6.8 1.2	0.80
18	0.05	6.0	8.6 1.4	1.8 0.2	0.61
19		8.4	7.4 1.6	3.1 0.3	0.69
20		62.4	6.3 2.4	5.2 0.3	0.81
21	0.10	6.0	12.6 2.6	1.7 0.1	0.70
22		12.6	11.0 3.8	3.8 0.2	0.81

Рис. 3. Кинетические кривые (а) окислительной полимеризации Ст при $V_{O2} \times 10^3 = 6.0$ (1), 8.4 (2), и 62.4 М/мин (3) и их анаморфозы (б). [АИБН]₀ = 0.05 М. $T = 95^{\circ}$ С.

Радикальная полимеризация стирола (Ст) в присутствии кислорода

окислительной полимеризации Ст при $V_{O2} \times 10^3 = 6.0$ (1), 8.4 (2), и 62.4 М/мин (3). [АИБН]₀ = 0.05 М. *T* = 95°С.

Рис. 5. Рассчитанные зависимости $[O_2]$ от *t* при $V_{O2} \times 10^3 = 6.0$ (1), 8.4 (2) и 62.4 М/мин (3). [АИБН]₀ = 0.05 М.

Рис. 6. Зависимость массовой доли кислорода (ω_{O}) в составе полимера от времени синтеза при $V_{O2} \times 10^3 = 6.0$ (1), 8.4 (2), и 62.4 М/мин (3).

Рис. 7. M_n полимеров, образующихся по ходу окислительной полимеризации Ст при $V_{O2} \times 10^3 = 6.0$ (1), 8.4 (2), 12.6 (3) и 62.4 М/мин (4) и [АИБН]₀ = 0.05 М.

Радикальная полимеризация стирола (Ст) в присутствии кислорода

Рис. 5. Рассчитанные зависимости $[O_2]$ от *t* при $V_{O2} \times 10^3 = 6.0$ (1), 8.4 (2) и 62.4 М/мин (3). [АИБН]₀ = 0.05 М.

Рис. 8. ¹Н ЯМР-спектры линейных полистиролов, полученных при $V_{O2} \times 10^3 = 8.4$ (1), 62.4 М/мин (2), [АИБН]₀ = 0.05 М и *t* = 15 мин.

Таблица 2. Теплота, выделившаяся при распаде пероксидных групп (*Q*), и их содержание в полимерах ([O-O]), полученных при времени синтеза 300 мин и [АИБН]₀ = 0.05 М.

V ₀₂ ×10 ³ , М/мин	Q, кДж/г	[О-О]×10 ³ , моль/г
6.0	240	1.1
62.4	330	1.6

Радикальная сополимеризация стирола и дивинилбензола в присутствии кислорода

Рис. 9. Кинетические кривые радикальной сополимеризации стирола и дивинилбензола $[M_2]_0/[M_1]_0 = 0/100$ (1), 8/100 (2), 11/100 (3), 14/100 (4) и 20/100 (5) при барботировании кислорода с расходом $V_{O2} \times 10^3 = 6.0$ М/мин. [АИБН]₀ = 0.05 М.

Таблица 3. Начальные условия проведения окислительной сополимеризации Ст и ДВБ и конверсия мономеров C_g в момент гелеобразования $t_{\kappa o \mu}$. [АИБН]₀ = 0.05 М. *T* = 95°C.

N⁰	V _{O2} 10 ³ , М/мин	[M ₂] ₀ /[M ₁] ₀	t _{кон} , мин	C_g
23	1.7	3/100	300	_
24		6/100	110	0.56
25		8/100	45	0.37
26		11/100	35	0.35
27	6.0	8/100	300	_
28		11/100	65	0.48
29		14/100	60	0.44
30		20/100	35	0.32

 M_2 – дивинилбензол, M_1 - стирол

Рис. 11. Хроматографические кривые полимеров, полученных при $[M_2]_0/[M_1]_0 = 3/100$ (1), 6/100 (2), 8/100 (3) и t = 30 мин, детектируемые RI (а) и MALLS (б). V_{O2} 10³ = 1.7 М/мин.

Рис. 12. Зависимость логарифма молекулярной массы, определенной двухдетекторным методом, от времени элюирования для полимеров, полученных при $[M_2]_0/[M_1]_0 = 0/100 (1)$, 8/100 (2) и 11/100 (3) и t = 60 мин, а также калибровочная зависимость (4), используемая при расчете молекулярных масс однодетекторным методом. V_{O2} $10^3 = 6.0$ М/мин.

Разветвленные полимеры, полученные при высоких скоростях барботирования кислорода

Таблица 5. Начальные условия синтеза, средние приведенные скорости сополимеризации при t = 15-60 мин $(R_p/[M])_1$ и конечные конверсии мономеров *C* при времени $t_{\kappa o H}$. [АИБН]₀ = 0.01 М. *T* = 95°C.

N⁰	V _{O2} 10 ³ , М/мин	[M ₂] ₀ /[M ₁] ₀	<i>t</i> _{кон} , МИН	С	Гель	(<i>R_p</i> /[M]) ₁ ×10 ³ , мин ⁻¹
1		0/100	300	0.78	нет	3.8
3	420	87/100	300	1.33	нет	7.7
4		104/100	300	1.53	нет	7.2
5		131/100	150	~0.9	да	7.6
6		0/100	300	0.68	нет	3.4
8	510	78/100	300	1.25	нет	10.4
9		104/100	300	1.36	нет	9.4
11		180/100	125	0.72	нет	8.5
12		180/100	150	~0.9	да	8.5

Рис. 13. Фотографии процесса горения полимеров, полученных при $V_{O2} \times 10^3 = 6.0$ (1) и 420 М/мин (2). [АИБН]₀ = 0.01 моль/л.

ω_C = 69 - 71 мас.% ω_H = 6 - 8 мас.% ω_O = 21 - 25 мас.% [O-O] = (1.9 - 5.1) 10⁻³ моль/г

Выводы

- 1. Показано, что молекулярный кислород «подменяет» растущие углеродцентрированные радикалы на перокисльные, увеличивая тем самым эффективную константу передачи цепи.
- 2. Впервые показана возможность получения высокоразветвленных полимеров методом трехмерной радикальной полимеризации, в основу которого положен принцип использования молекулярного кислорода как регулятора длины первичной полимерной цепи. Развитый на примере сополимеризации стирола и дивинилбензола подход позволяет получать полимеры с регулируемыми молекулярно-массовым распределением, степенью разветвления и содержанием пероксидных групп, определяющим термическую стабильность полимеров и их область применения.
- На примере окислительной полимеризации стирола показано, что при относительно невысоких скоростях барботирования кислорода, процесс протекает в две стадии. Установлено, что процесс протекает в диффузионном режиме и концентрация кислорода на несколько порядков ниже его концентрации в насыщенном растворе.
- 4. Впервые определена зависимость величины критической конверсии гелеобразования при окислительной сополимеризации стирола и дивинилбензола от мольного соотношения мономеров и концентрации растворенного кислорода. Показано, что при увеличении концентрации кислорода, то есть доли «подмененных» радикалов, критическая конверсия гелеобразования растет.
- 5. Установлено, что при высокой скорости барботирования кислорода (0.5 моль/л мин) трехмерная радикальная полимеризация протекает без гелеобразования даже при мольном избытке дивинилбензола по отношению к стиролу. При этом образуются высокоразветвленные полимеры с практически регулярным чередованием мономерных звеньев и пероксидных групп.

Спасибо за внимание!