Light-induced charge separation dynamics in polythiophene/fullerene composite probed by pulse EPR spectroscopy

Leonid V. Kulik

Voevodsky Institute of Chemical Kinetics and Combustion of the Siberian Branch of the Russian Academy of Sciences Novosibirsk, Russia

Outline

- 1. Principles of organic photovoltaics
- 2. Models of charge separations at donor/acceptor interface
- 3. Brief introduction into out-of-phase electron spin echo spectroscopy
- Results: distance- and time-scale of lightinduced charge separation in polymer/fullerene composite
- 5. Conclusions

Organic Solar Cells

The main advantages:
flexibility
light weight
Inexpensive processing by inkjet printing or spray coating techniques

PCBM [6,6]-phenyl C₆₁ butyric acid methyl ester

CH₂(CH₂)₄CH₃

P3TH poly(3-hexylthiophene)

The benchmark photovoltaic composite P3HT/PC60BM Dang M.T., Hirsch L., Wantz G. Advanced Materials, 23, 3597 (2011)

Why do charges separate in polymer/fullerene composites?

Coulomb attraction energy is about 0.5 eV if charges are located at neighboring molecules.

Still the charge separation efficiency is close to unity for P3HT/PCBM composite.

Proposed models for charge separation in polymer-fullerene composite

No experimental technique can measure the distance between the charges in CT state directly except electron spin echo.

(a)

S. Few et al., 2014

Usual in-phase electron spin echo in rotating frame

 $\mathsf{B}_{\mathrm{eff}} = (\mathsf{B}_1, 0, \mathsf{B}_0 \text{-} \omega_0 / \gamma)$

Observed in isolated radicals (S = 1/2) with any spin polarization, thermalized radical pairs, triplets, higher spin systems

Spin-correlated radical pair

Dipolar splitting d

Out-of-phase electron spin echo

Observed in spin-correlated radical pairs.

Can be detected only if:

- 1. Spins of the radicals are correlated (the pair is singlet spin state)
- 2. Spins experience magnetic interactions (dipolar or exchange)
- 3. Both spins are excited by microwave pulses.

Optimal pulse turning angles: $\pi/4 - \tau - \pi$

Dependence on τ : M_X ~ sin(d τ) d = $\gamma^2/r^3 (1 - 3\cos^2 \theta)/2$

Interspin distances in nanometer range can be determined with angstrom precision!

P3HT/PC70BM composite sample preparation

Repare 400 ml toluene solution of P3HT and PC70BM (0,5 mg each)

put the solution was into quartz tube, evaporate toluene, the blend with thickness ~ 1 mkm should be annealed at 150°C under vacuum of ~ 0.1 torr.

Time domain echo shape of P3HT/PC₇₀BM composite

Pulse EPR experiments on P3HT/PC70BM composite

Flash – DAF - $\pi/4$ – τ – π – τ – echo

T = 65K

Out-of-phase ESE decay

Interspin distance distribution in CT state

Evolution of interspin distance distribution with DAF increase

Initial distance of charge separation in polymer/fullerene composite is not that small!

Conclusions

Light-induced charge-transfer state in P3HT/PCBM composite is spin-correlated radical pair.

Out-of-phase electron spin echo is the method of choice for study the structure of charge-transfer state in polymer/fullerene composites and the mechanism of charge separation.

From numerical simulation of the ESE evolution for singlet radical pair $P3HT^+/PC_{70}BM^-$ the distribution of the distance between the radicals in charge-transfer state is obtained at 65K.

The evolution of charge-transfer state is determined by two simultaneous processes: diffusion of the radicals from the polymer/fullerene interface and geminate recombination of radical pairs with small distances between radicals.

Acknowledgements

Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia Mikhail Uvarov Ekaterina Lukina Alexander Popov

Max-Planck Institute of Chemical Energy Conversion, Muelheim-an-der-Rurh, Germany Wolfgang Lubitz Anton Savitsky Ed Reijerse Gugrun Klihm Leonid Rapatskiy

Russian Foundation for Basic Research Alexander von Humboldt Foundation

Thank you for your attention!

Thank you for attention!

10.0

IV International School for Young Scientists

Magnetic Resonance and Magnetic Phenomena in Chemical and Biological Physics

September 4-8, 2016, Akademgorodok, Novosibirsk, Russia

Conference Themes

Basics of magnetic resonance • Quantum chemistry in magnetic resonance Molecular magnets and supramolecular systems • Solid state magnetic resonance Active sites in heterogeneous catalysis • Spin manipulation and quantum computing Spin chemistry • Paramagnetic states in functional materials and nanostructures Magnetic resonance imaging applications • In situ magnetic resonance Synthesis, properties, and applications of spin probes and labels

Key Dates & Information

Registration – June 30 Abstracts – June 30 (Oral); July 31 (Posters) http://physchem.wix.com/mrschool2016

Organizers

